GREENFIELD ECONOMICS **VALUE OF INFORMATION USING SIPMATH MODELING Brian Putt #RISKAWARENESSWEEK2019**

RISK AWARENESS WEEK

Objectives of this session

- Have a discussion around greenfield economics
 - Principles to consider
 - Sensitivities that impact results
 - Impact of value measures
- Explain the SIPmath model used in the discussion
- Understand how SIPmath can be used to evaluate the Value of Information \bullet

Objective: Determine the optimum development plan for an offshore oil & gas development

Issues

- Should we develop?
- What type of facility?
- What size facility should be built
- Resource size
- Deliverability
- Cost to develop
- Operating costs
- Contractor to build the facility
- Oil Price
- Where to market the oil and gas
- Fiscal and tax uncertainty

Decision Hierarchy

Givens:

- Fiscal and tax stability
- What type of facility
- Focus Decisions:
- Should we develop
- What size of facility should be built
- Should we drill an appraisal well to understand size of resource

Tactical Decisions:

- Contractor to build the facility
- Where to market the oil and gas

Strategy Table

5

	Decision	Alternatives →	
	Should we obtain information	Yes	
	Should we Develop	Yes	
	Size of processing facility for each outcome of indicator	30 MBD	
Ş			

2 | k2019

Value of Information compares the value without and with information

- There can only be Value of Information (VOI) if there is a change in decision policy
- Information can be perfect or imperfect information
- If we have information on the resource, how would the decision policy change?

Incr Capacity with Info	Develop	
Indicate Seg 1	No	0.00
Indicate Seg 2	Yes	56.24
Indicate Seg 3	Yes	77.57

With Without Information

Value Measures are very important

- What are your value measures?
- Do they change with decisions?
- How do they impact your decision?

Profitability Index (PI)

Risk reduction

Safety

Deliverability

Environmental Damage

Reliability

Why Greenfield development analysis is important

Forces For Large Facilities				
 Revenue now is worth more than the future 	RecRes			
 Meet our production targets 	ant			
 Brings more oil into the concession life 	 Res pro 			
 Bigger is better 	• Oil			

Value of information can possibly support both perspectives

es Against Large Facilities

- quires greater capital expenditures
- serves may be less than
- ticipated
- servoir may not sustain the higher oduction rate
- prices could increase in the future

Resource Characterization is critical

- Three segments with traditional 25/50/25% probabilities
- Segments defined as percentiles of the original lognormal distribution with overlap Seg 1 goes from P0 to P30 while Seg 2 starts at P25 \rightarrow Overlap of segments
- Multiple ways to characterize the resource distribution in preparation for a VOI analysis lacksquare
- Characterization must reasonably represent original ulletassessment

Three Triang	ular distribu	itions			
Segment 1			0%	25%	75%
			0%	10%	30%
	25%	156.27	53.03	129.78	188.46
Segment 2					
			25%	35%	80%
	50%	276. 49	177.79	203.30	372.30
Segment 3					
			75%	75%	99%
	25%	464.83	345.13	345.13	767.45

How might Information Impact the Optimal Decision Policy

- What is the reference case for evaluating VOI?
- What is the optimal development plan with Perfect Information?
- What is the impact on the development plans if we used Discounted Resource?
- How does imperfect information impact us?
- How does the concession life impact the optimal development plan?

Adding uncertainty Conceptual No Information Decision Tree

- All decisions are up front. Choice of facility size based on Development Plan
- While shown here as discrete, capacity decision and uncertainties, we will treat both as continuous in the analysis.

based on Development Plan and uncertainties, we will

Conceptual Information Decision Tree

Expanded Dashboard

- Options to Test and specify type of information
- Decision Policy requires us to designate whether to develop and at what capacity for each of the resource indicators.
- We need to test / optimize these variables

Simulation	7	Greenfield Economics				
Decision Policy		Objective			NPV10	
		Probabilist	ic		Yes	
		Concessio	n Ends		2030	
		Test			Yes	
	Inform	ation Type	InfoType		Imperfect	
Incr	Capacity w	ith <mark>No</mark> Info		49.01	49.01	
	ncr Capacit	y <mark>with</mark> Info	Develop			
	Ind	icate Seg 1	No	0.00	0.0	
	Ind	icate Seg 2	Yes	56.24	56.2	
	Ind	icate Seg 3	Yes	77.57	77.6	
					Probabilistic	
	Optimized	Variable			244.5	
	NPV10 of	Project			923.3	
w/VOI	NPV @10%	6			923.3	
w/VOI	#REF!				432.0	
w/VOI	P10 NPV10)			(109.2)	
Value Creation				244.5		
Cost \$MM (Undiscour Cost Discounted @109		nted)		2,373.11		
		%		2,262.68		
Profitability Index (PI)					0.39	
Total Resource MMB				-		
Years on Plateau VOI @using Value Cre					4.35	
			ation			
	Number of	f Trials			1,000	
Date				8/13/2019		

What is the difference between perfect and imperfect information

- With **perfect** information we know with certainty the segment of the resource curve lacksquare
- With **imperfect** information, there is some uncertainty. lacksquare

Given Reality, what is the probability that we will interpret Ind Seg 1, Ind Seg 2 or Ind Seg 3

Perfect Information				Imperfect Information			
	Ind Seg 1	Ind Seg 2	Ind Seg 3		Ind Seg 1	Ind Seg 2	Ind Seg 3
Seg 1	1	0	0	Seg 1	0.75	0.2	0.05
Seg 2	0	1	0	Seg 2	0.2	0.6	0.2
Seg 3	0	0	1	Seg 3	0.05	0.45	0.5

Understanding the definition of Imperfect Information

Given Reality, what is the probability that we will interpret Ind Seg 1, Ind Seg 2 or Ind Seg 3

Imperfect Information							
	Ind Seg 3						
Seg 1	0.75	0.2	0.05				
Seg 2	0.2	0.6	0.2				
Seg 3	0.05	0.45	0.5				

Optimal Decision with Information

- Optimal decision is to not develop the low resource indicator ullet
- NPV is higher than the reference case \bullet
- ROR distribution, given development is higher than the reference. •

Understanding where the information adds value

Decision Maker can better understand the value of information by comparing the two \bullet distributions and the "difference" or incremental value of the distributions.

With information the Optimized NPV is lower

- Optimizing on NPV10, NPV given ulletdevelopment is lower, but ROR is higher. Capital investments are lower.
- Sometimes we do not develop

With information the Optimized Value Creation is Higher

- Optimizing on NPV10, NPV given ulletdevelopment is lower, but ROR is higher. Capital investments are lower.
- Value Creation is higher than without information

Final Thoughts

- What we have covered is not easy and I don't have all the answers. ullet
- This analysis could be conducted using discrete outcomes only and a traditional decision ullettree.
- Other Monte Carlo software could also be used but would not be as interactive and easy to \bullet generate presentation graphics.
- There are many miss conceptions about how to conduct greenfield economics. Hope this session has enlightened you.

